Local Directional Relation Pattern for Unconstrained and Robust Face Retrieval
نویسنده
چکیده
Face recognition is still a very demanding area of research. This problem becomes more challenging in unconstrained environment and in the presence of several variations like pose, illumination, expression, etc. Local descriptors are widely used for this task. The existing local descriptors are not able to utilize the wider local information to make the descriptor more discriminative. The wider local information based descriptors mainly suffer due to the increased dimensionality. In this paper, this problem is solved by encoding the relationship among directional neighbors in an efficient manner. The relationship between the center pixel and the encoded directional neighbors is utilized further to form the proposed local directional relation pattern (LDRP). The descriptor is inherently uniform illumination invariant. The multi-scale mechanism is also adapted to further boost the discriminative ability of the descriptor. The proposed descriptor is evaluated under the image retrieval framework over face databases. Very challenging databases like PaSC, LFW, PubFig, ESSEX, FERET, and AT&T are used to test the discriminative ability and robustness of LDRP descriptor. Results are also compared with the recent state-of-the-art face descriptors such as LBP, LTP, LDP, LDN, LVP, DCP, LDGP and LGHP. Very promising performance is observed using the proposed descriptor over very appealing face databases as compared to the existing face descriptors.
منابع مشابه
Automatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملLDOP: Local Directional Order Pattern for Robust Face Retrieval
Abstract— The local descriptors have gained wide range of attention due to their enhanced discriminative abilities. It has been proved that the consideration of multi-scale local neighborhood improves the performance of the descriptor, though at the cost of increased dimension. This paper proposes a novel method to construct a local descriptor using multi-scale neighborhood by finding the lo...
متن کاملFace Recognition via Local Directional Pattern
In this paper, we propose an illumination-robust face recognition system via local directional pattern images. Usually, local pattern descriptors including local binary pattern and local directional pattern have been used in the field of the face recognition and facial expression recognition, since local pattern descriptors have important properties to be robust against the illumination changes...
متن کاملLocal Polynomial Approximation-Local Binary Pattern (LPA-LBP) based Face Classification
In literature of face recognition many methods have been proposed which extract features at multiple scales for robust classification. In this paper, we proposed a novel method which utilizes Local Polynomial Approximation (LPA) techniques to capture the directional information of the face image at different scales. LPA based filters are used to obtain directional faces from the normalized face...
متن کاملLocal Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching
Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.09518 شماره
صفحات -
تاریخ انتشار 2017